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USE OF THE ENERGY CRITERION OF FRACTURE

TO DETERMINE THE SHAPE OF A SLIGHTLY CURVED CRACK

UDC 539.375S. A. Nazarov1 and M. Specovius-Neugebauer2

An asymptotic formula is obtained for the total-energy increment during quasistatic growth of a semi-
infinite crack in an anisotropic elastic plane under complex loading. It is assumed that the shear loads
are much larger than the tearing loads. The shape of the slightly curved crack was determined using
the Griffith criterion in two versions: global and local. It is shown, in particular, that the first version
leads to an improbable result.
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1. Energy Criterion of Fracture. The Griffith criterion is usually formulated as follows: During qua-
sistatic propagation, the crack chooses the path that ensures the lowest total energy (potential and surface) at any
time. In this connection, two questions arise: 1) What time is considered if the fracture process is quasistatic;
2) How should the minimization problem be formulated: globally, for the entire time interval, or locally, for each
time?

The answer to the first question is simple enough: The loading parameter τ is required that corresponds to a
slower process than wave propagation in a solid and increases monotonically together with real time t. In principle,
the parameter τ can differ in dimension from t but its introduction allows one to ignore the inertial terms in the
equilibrium equations [1].

The answer to the second question is not so obvious since for a complex stress state, the problem of calculating
the total energy as a function of the crack shape using the modern mathematical apparatus cannot be solved. In the
present study, the asymptotic energy was found using the simplifying assumption that the tearing load far exceeds
the shear load. As a consequence, the crack path remains close to a straight line and its slight curvature is taken
into account using asymptotic methods.

In the present work, we studied the elongation and curving of a semi-infinite crack which initially passes
along the axis of elastic and strength symmetry of an anisotropic plane. Approximate but asymptotically accurate
formulas were obtained and used to show that the global formulation of the Griffith criterion (minimization of the
total energy on the entire interval [0, τ ]) leads to a paradoxical result: the crack branch is straight-line and the angle
of its deviation is determined only by the load at the time τ but not by the loading prehistory. This conclusion is
inconsistent with the assumption on the quasistatic nature of the crack growth because if the loading is not simple,
then, at any time τ ′ ∈ (0, τ), the crack deviation from the initial axis is different. The reason for the inadequacy
of the global formulation is apparently the absence of the potentiality property of the total energy functional since
the fracture is irreversible. It is shown that the local formulation of the Griffith criterion (minimization of the total
energy increment on elementary intervals) is free from the disadvantages mentioned above.

2. Formulation of the Crack Problem. Let a semi-infinite crack in a homogeneous elastic plane R
2 be

defined by the formula

Λl := Λl(h, H) = {x = (x1, x2): x1 ≤ l, x2 = hH(x1)}. (2.1)
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The origin of the Cartesian coordinates x coincides with the initial position of the tip O of a straight crack, i.e.,
H(x1) = 0 at x1 ≤ 0; H is a continuous function which is smooth at x1 ≥ 0, but its derivatives can undergo
discontinuities of the first kind at the point x1 = 0. The quantity l ≥ 0 is the crack length increment, and the
function H and the small dimensionless parameter h > 0 describe the slight curvature of the crack path.

The plane with the crack is loaded at infinity and the displacement vector ul = (ul
1, u

l
2) satisfies the homo-

geneous equilibrium equations and the boundary conditions

− ∂

∂x1
σ1k(ul; x) − ∂

∂x2
σ2k(ul; x) = 0 (k = 1, 2, x ∈ R

2 \ Λl); (2.2)

n±
1 (x)σ1k(ul; x) + n±

2 (x)σ2k(ul; x) = 0 (k = 1, 2, x ∈ Λ±
l ), (2.3)

and the asymptotic condition

ul(x) = C1(l)X1(x) + C2(l)X2(x) + O(|x|−1/2), |x| → ∞. (2.4)

Here σjk(u) are the Cartesian components of the stress tensor generated by the displacement vector u;
n± = (n±

1 , n±
2 ) is the unit outward normal vector on the faces Λ±

l of the crack Λl. The quantities C1(l) and
C2(l), which have the dimension of the stress intensity factor (SIF), describe the external actions and are defined
so that for each l ≥ 0, the crack Λl is critical (for the definition see Sec. 5). The symbols X1 and X2 are used to
denote the displacement fields that generate square-root singularities of the stresses and, hence, satisfy the ordinary
normalization conditions on the crack extension Λ0 = {x: x1 ≤ 0, x2 = 0}:

σ12(Xj; x1, 0) = (2πx1)1/2δj2, σ22(Xj ; x1, 0) = (2πx1)1/2δj1, j = 1, 2, x1 > 0. (2.5)

Here δjk is the Kronecker symbol. In addition, the smooth functions l �→ Ci(l) are assumed to satisfy the relations

C1(l) > 0; (2.6)

C2(l) = hC2(l), (2.7)

where |C2(l)| ≤ C1(l) at all l ≥ 0; h > 0 is a small parameter [see (2.1)]. We assume that the abscissa Ox1 passes
through the plane of symmetry of the physical properties of the solid. As is shown in [2], inequality (2.6) ensures
the absence of contact of the crack faces (for arbitrary anisotropy, the latter, generally speaking, is incorrect).

Since outside a certain circle, the crack Λl is straight-line, formula (2.4) can be specified by using lower-order
asymptotic terms O(|x|−1/2):

ul(x) =
2∑

j=1

(Cj(l)Xj(x) + Nj(l)Y j(x)) + O(|x|−1), |x| → ∞. (2.8)

Here N1(l) and N2(l) are coefficients that depend on the SIF Cj(l), the elastic properties of the material, and the
crack shape (2.1). The vector functions Y j , which are positively homogeneous and have a power of −1/2, obey the
biorthogonality conditions (see, for example, [2, 4, 5])

q(Xj , Y k; Γ) :=
∫

Γ

(Y k(x)σ(n)(Xj; x) − Xj(x)σ(n)(Y k; x)) dsx = δjk (j = 1, 2, k = 1, 2), (2.9)

where Γ is a simple smooth arch which connects the faces of the crack Λ0 and encompasses its tip and σ(n)

= (σ(n)
1 , σ

(n)
2 ) [σ(n)

j = n1σ1j +n2σ2j , where n = (n1, n2) is the unit outward normal vector for the region Ω bounded
by Γ]. On the right side of (2.9), the integral is invariant and, by virtue of the symmetry of the elastic properties,
the following equality is satisfied: [2]

∂Xj

∂x1
(x) = −mjjY

j(x) (j = 1, 2); (2.10)

here m11 > 0 and m22 > 0 are material constants. In the isotropic case, m11 = m22 = µ−1(1 − ν), where µ > 0 is
the shear modulus and 0 � ν < 1/2 is the Poisson factor.

Relation (2.10) contains the derivatives of the fields Xj along the straight-line crack Λ0, which are propor-
tional to the weight functions [6] or the dual singular solutions Y j [4]. In [2], the following relation between Y 2 and
the derivative ∂X1/∂x2 across the crack was obtained:
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∂X1

∂x2
(x) = −m11

m22

∂X2

∂x1
(x) = m11Y

2(x). (2.11)

Formula (2.11) differs from formula (2.6) in [2] because (2.11) uses the basis {X1, X2} adapted to the force fracture
criteria whereas formula (2.6) in [2] uses a basis adapted to the strain fracture criteria; these bases are related by
formulas (1.8) and (1.7) in [2].

3. Energy Functional. Since the solution ul of the problem (2.2)–(2.4) in the unbounded region R
2 \ Λl

increases as O(|x|1/2) for |x| → ∞, the integral of the elastic energy

E(ul; R2 \ Λl) =
1
2

2∑
j,k=1

∫

R2\Λl

σjk(ul; x)
∂ul

j

∂xk
(x) dx

diverges. To impart meaning to the energy functional, we interpret the solution ul as the limit of solutions of the
problems for large but bounded bodies:

− ∂

∂x1
σ1k(ul

(R); x) − ∂

∂x2
σ2k(ul

(R); x) = 0, k = 1, 2, x ∈ ΩR \ Λl; (3.1)

n±
1 (x)σ1k(ul

(R); x) + n±
2 (x)σ2k(ul

(R); x) = 0, k = 1, 2, x ∈ Λ±
l ∩ ΩR; (3.2)

σ(n)(ul
(R); x) = gl

(R)(x) :=
2∑

j=1

C1j(l)σ(n)(Xj; x), x ∈ ∂ΩR. (3.3)

Here ΩR = {x: R−1x ∈ Ω} is the R-fold extension of a certain region Ω ⊂ R
2 which contains the point O.

Considering the ratio l/R a small parameter, we seek an asymptotic representation of solutions of problem (3.1)–
(3.3) in the form

ul
(R)(x) = ul(x) + R−1/2v(R−1x) + ũl

(R)(x). (3.4)

Using the method of composite expansions [7] (see also [3, 8–10] for elasticity problems), we conclude that the main
term of the asymptotic relation (3.4) is a solution of the problem (2.2)–(2.4) and the correction v is a bounded
solution for a solid Ω with an edge crack Λ0 ∩ Ω (without a branch) that compensates for the residual of the field
ul in the boundary condition (3.3). Thus, according to expansion (2.8), we have

σ(n)(v; ξ) = −N1(l)σ(n)(Y 1; ξ) − N2(l)σ(n)(Y 2; ξ), ξ ∈ ∂Ω. (3.5)

Finally, ũl
(R) is a small residue, which, outside the tip of the crack Λl, under a suitable normalization eliminating

arbitrariness in the choice of rigid displacement, obeys the inequality [7, 9]

|ũl
(R)(x)| ≤ cm11C1(l)

l

R
(l + |x|)−1/2 (3.6)

with a constant c that does not depend on the geometrical parameters R and l.
By virtue of the Clapeyron theorem and formulas (3.4) and (3.6), the potential strain energy (elastic energy

ignoring the work of external forces) stored in the solid ΩR \ Λl satisfies the relation

U l
R := E(ul

(R); ΩR \ Λl) −
∫

ΓR

gl
(R)u

l
(R) dsx = −1

2

∫

ΓR

gl
(R)u

l
(R) dsx

= −1
2

∫

ΓR

gl
(R)(x)

(
ul(x) + R−1/2v

( x

R

))
dsx + O

(
m11C1(l)2

l

R

)
. (3.7)

We consider the last integral IR over the contour ΓR = ∂ΩR. In view of formulas (2.4) and (2.5), we have

IR = RI0 +
2∑

j=1

Cj(l)I
j
R, I0 =

2∑
j,k=1

Cj(l)Ck(l)
∫

Γ1

σ(n)(Xj; x)Xk(x) ds,

Ij
R =

∫

ΓR

σ(n)(Xj ; x)
(
ul(x) −

2∑
k=1

Ck(l)Xk(x) + R−1/2v
( x

R

))
ds.

(3.8)
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The quantity I0 does not depend on R. It should be noted that by virtue of relations (2.8) and (3.5), the difference
ul −

∑
Ck(l)Xk coincides with accuracy up to O(m11C1(l)(L/R)3/2) with the expression

∑
Nk(l)Y k on the

contour ΓR and the following equality is valid:

σ(n)
( 2∑

k=1

Nk(l)Y k(x) + R−1/2v(R−1x)
)

= 0, x ∈ ΓR.

Hence,

Ij
R = q

(
Xj ,

2∑
k=1

Nk(l)Y k + R−1/2v; ΓR

)
+ O

(
m11C1(l)2

l

R

)

=
2∑

k=1

Nk(l)q(Xj , Y k; Γ) + O
(
m11C1(l)2

l

R

)
= Nj(l) + O

(
m11C1(l)2

l

R

)
. (3.9)

Thus, from formulas (3.7)–(3.9) it follows that the potential energy U l
R increases without bounds as R → +∞, but

the increment ∆U l
R = U l

R − U0
R remains bounded and tends to the quantity

∆U l = −1
2

2∑
j=1

Cj(l)Nj(l), (3.10)

which should be understood as the increment in the potential strain energy of an unbounded solid due to crack
extension.

4. Asymptotic Representation of the Total-Energy Increment. The surface-energy increment for
the formation of the branch (2.1) of the crack Λl \ Λ0 is easy to find:

∆Sl = Sl − S0 = 2

l∫

0

γ
(

arctan
(
h

dH

dx1
(x1)

))(
1 + h2

∣∣∣ dH

dx1
(x1)

∣∣∣2
)1/2

dx1

= 2γ(0)l + h2(γ(0) + h2γ′′(0))

l∫

0

∣∣∣ dH

dx1
(x1)

∣∣∣2 dx1 + O(h4). (4.1)

Here γ is the surface-energy density, which smoothly depends on the crack inclination angle θ = arctan (h
× dH(x1)/dx1); the prime denotes the derivative with respect to θ; γ′(0) = 0, since γ is an even function of
the variable θ by virtue of the assumption of the symmetry of the physical properties of the material about the
abscissa.

According to [11], the increment in the potential strain energy (3.10) is calculated by the formula

∆U l = −1
2

2∑
j,k=1

Cj(l)Mjk(l, hH)Ck(l), (4.2)

where M = (Mjk) is the symmetric positive definite matrix of energy release of size 2× 2, which is composed of the
coefficients of the expansion

wj(x) = Xj(x) +
2∑

k=1

Mjk(l, hH)Y k(x) + O(|x|−1) (|x| → ∞) (4.3)

of the special solutions of the problem (2.2), (2.3) of a plane with a crack Λl. By virtue of relations (2.4) and (4.3),
the equality ul = C1(l)w1 + C2(l)w2 holds, which, together with relations (2.8) and (3.10), leads to formula (4.2).

To obtain an asymptotic representation (with respect to the parameter h) of the coefficients Mjk(l, hH),
we use the boundary rectifying method (for an alternative approach see [15, 16]), which is used in [2, 12–14] and
substantiated in [7]. Performing the change

x = (x1, x2) �→ ξ = (ξ1, ξ2) = (x1 − l, x2 − hH(l)),
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we place the origin of the Cartesian coordinates ξ at the tip of the crack (2.1), which in these coordinates is defined
by the formula

Λl := Λl(h, H) = {ξ: ξ1 ≤ 0, ξ2 = h(H(ξ1 + l) − H(l))}. (4.4)

Because for the positively homogeneous power λ ∈ R of the function Z for any constant vector b ∈ R
2, the Taylor

formula

Z(ξ + b) = Z(ξ) + (b∇ξ)Z(ξ) + O(|ξ|λ−2) (|ξ| → ∞)

is valid, the asymptotic condition (4.3) for the vector function ξ �→ W j(ξ) = wj(x) is written as

W j(ξ) = Xj(ξ) + l
∂Xj

∂ξ1
(ξ) + hH(l)

∂X i

∂ξ2
(ξ) +

2∑
k=1

Mjk(l, hH)Y k(ξ) + O(|ξ|−1),

|ξ| → ∞.

(4.5)

Seeking an asymptotic representation for the parameter h of the fields

W j(ξ) = W j0(ξ) + hW j1(ξ) + h2W j2(ξ) + . . . , (4.6)

we extend the boundary conditions from the crack (4.4) onto the half-line Λ0 = {ξ: ξ1 ≤ 0, ξ2 = 0}. The outward
normal n±(h, ξ1) to the faces Λ±

l is specified by the formula

n±(h, ξ1) = n0(h, ξ1)−1/2(±hH ′
l(ξ1),∓1), (4.7)

where Hl(ξ1) = H(ξ1 + l)−H(l) and n0(h, ξ1) = 1+h2H ′
l(ξ1)2; the prime denotes the derivative with respect to ξ1.

Substituting relations (4.6) and (4.7) into the boundary condition (2.3) multiplied by n0(h, ξ1)1/2, we formally
obtain the relation

0 = ∓(σ2k(W j ; h, ξ) − hH ′
l(ξ1)σ1k(W j ; h, ξ))

∣∣∣
ξ2=hHl(ξ1)

= ∓σ2k(W j0; ξ1,±0) ∓

∓ h(σ2k(W j1; ξ1,±0) + Hl(ξ1)∂2σ2k(W j0; ξ1,±0)− H ′
l(ξ1)σ1k(W j0; ξ1,±0))

∓ h2(σ2k(W j2; ξ1,±0) + Hl(ξ1)∂2σ2k(W j1; ξ1,±0)− H ′
l (ξ1)σ1k(W j1; ξ1, 0)

+ (1/2)Hl(ξ1)2∂2σ2k(W j0; ξ1,±0) − H ′
l(ξ1)Hl(ξ1)∂2σ1k(W j0; ξ1,±0)) + . . . . (4.8)

Each of the terms W jp in the asymptotic relation (4.6) satisfies the homogeneous equilibrium equations (2.2)
on the plane with a slit R

2 \ Λ0. The equalities ∂2σ2k(W jp) = −∂1σ1k(W jp) implied by system (2.2) simplify the
factors at hp on the right side of (4.8). Cancelling these factors, we obtain the following boundary conditions on
the faces of the crack Λ0:

σ2k(W j0; ξ1,±0) = 0, k = 1, 2, ξ1 < 0; (4.9)

σ2k(W j1; ξ1,±0) =
∂

∂ξ1
(Hl(ξ1)σ1k(W j1; ξ1,±0)), k = 1, 2, ξ1 < 0; (4.10)

σ2k(W j2; ξ1,±0) =
∂

∂ξ1
(Hl(ξ1)σ1k(W j1; ξ1,±0))

+
1
2

∂

∂ξ1

(
Hl(ξ1)2

∂

∂ξ2
σ1k(W j0; ξ1,±0)

)
, k = 1, 2, ξ1 < 0. (4.11)

Relation (4.8) uses the Taylor formula for the variable ξ2, which requires sufficient smoothness of the vector
functions W j and W jp. The initial crack (4.4) has angular points ξ0 = (0, 0) and ξh± = (−l, hH(0) ± 0), at which
the stresses σik(W j ; h, ξ) acquire singularities. In the straightening of the crack Λl, its tip ξ0 remains motionless;
therefore, the stresses σik(W jp; ξ) possess the same singularities O(|ξ|−1/2) as the stresses σik(W j ; h, ξ). On the
right sides of (4.10) and (4.11), the higher-order singularities that arise from the differentiation of the stresses are
cancelled by the factors Hl(ξ1), which vanish for ξ1 = 0.
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The point ξ0± = (−l,±0) ∈ Λ±
0 is the image of the vertex ξh± of an angle with the opening

π ∓ arctan (hH ′(0)) on Λ±
l , and the stresses σik(W j ; h, ξ) are quantities of order O(|ξ − ξh±|β±(h)) near the points

ξh± [β±(h) are infinitesimal as h → +0] (see, for example, [17]). By virtue of the results obtained in [7] (see
also [18, 19]), the expansion (4.6) can be imparted meaning only provided that the order λ of the singularity
σik(W jp; ξ) = O(|ξ − ξ0±|−λ) it is strictly less than unity. Otherwise, additional boundary layers arise near the
points ξh±; they are absent in the representation (4.6) but are constructed using the procedures described in [7,
17–19]. Since the function Hl is smooth everywhere except at the point ξ1 = −l, the right sides of boundary
conditions (4.10) can undergo discontinuities of the first kind at this point, and the stresses σik(W j1) acquire a
logarithmic singularity O(1 + | ln |ξ − ξ0±| |). In this case, the right sides of boundary conditions (4.11) and, hence,

the stresses σik(W j2; ξ) have nonenergy singularities O(|ξ − ξ0±|−1) and, as noted above, they require a correction
near the points ξh±. Thus, in the case of discontinuities and ignoring the boundary layers, one needs to eliminate the
singular term h2W j2(ξ) from expansion (4.6), i.e., to confine oneself to two terms of the asymptotic representation
and thus lower the accuracy of the expansion. We note that according to [20], the differentiation of the specified
piecewise smooth boundary conditions leads to the formation of Dirac δ-functions, which do not appear explicitly
in (4.11). From an analysis of the behavior of the solution W j2(ξ) as ξ → ξ0±, it follows that the accuracy o(h2)
of expansion (4.6) is retained outside the fixed vicinity of the point ξ = (−l, 0), i.e., the boundary layer near the
vertices ξh± of “almost straight” angles only has an indirect influence on the terms of the asymptotic representation

Mjk(l, hH) = M0
jk + hM1

jk + h2M2
jk + . . . , (4.12)

which are the coefficients in expansion (4.5) at infinity. Nevertheless, the accuracy of the asymptotic constructions
ignoring the boundary layers is acceptable for the attainment of the basic goal of the present work.

We determine the terms W jp. Substituting (4.6) and (4.12) into relation (4.5), by virtue of (2.10), we obtain

W j0(ξ) = Xj(ξ) − lmjjY
j(ξ) +

2∑
k=1

M0
jkY k(ξ) + O(|ξ|−1). (4.13)

It is obvious that the solution of the homogeneous equilibrium equations in R
2\Λ0 with the boundary and asymptotic

conditions (4.9) and (4.13) has the form W j0(ξ) = Xj(ξ); therefore, the following equalities are valid:

M0
jj = lmjj , j = 1, 2, M0

12 = M0
21 = 0. (4.14)

For the next term W j1, relation (4.5) implies the asymptotic representation

W j1(ξ) = H(l)
∂Xj

∂ξ2
(ξ) +

2∑
k=1

M1
jkY k(ξ) + O(|ξ|−1). (4.15)

Boundary conditions (4.10) for k = 2 are homogeneous (have zero right sides) since Xj is a solution of the homo-
geneous elastic problem on a plane with a semi-infinite slit and, hence, σ12(Xj; ξ1,±0) = 0, ξ1 < 0. In [2], it is
verified that

σ11(X1; ξ1,±0) = 0, σ11(X2; ξ1,±0) = ±σ0
11r

−1/2 �= 0, ξ1 < 0. (4.16)

Thus, in the case of j = 1, both boundary conditions (4.10) are homogeneous. By virtue of formula (2.11), relation
(4.15) is written as

W 11(ξ) = m11H(l)Y 2(ξ) +
2∑

k=1

M1
1kY k(ξ) + O(|ξ|−1) = O(|ξ|−1/2). (4.17)

The solution of the homogeneous problem of elasticity theory that vanishes at infinity is trivial, i.e., W 11(ξ) = 0.
By virtue of the expansion (4.17), we obtain

M1
11 = 0, M1

12 = M1
21 = −m11H(l). (4.18)

From the second formula in (4.16), it follows that in the case H ′
l(−l) �= 0 for j = 2 and k = 1, the right

part of boundary condition (4.10) undergoes a discontinuity at the point ξ1 = −l; therefore, the construction of the
term W 22 is complicated. As in [2], it can be verified that M1

22 = 0 but this equality is not required below.
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It remains to consider the term W 12. From formulas (4.5), (4.11), and (2.10) and relations W 10 = X1 and
W 11 = 0, we obtain

W 12(ξ) =
2∑

k=1

M2
1kY k(ξ) + O(|ξ|−1), |ξ| → ∞,

σ22(W 12; ξ1,±0) = 0,

σ21(W 12; ξ1,±0) =
1
2

∂

∂ξ1

(
Hl(ξ1)2σ11

(∂X1

∂ξ2
; ξ1,±0

))

= −1
2

m11

m22

∂

∂ξ1

(
Hl(ξ1)2

∂

∂ξ1
σ11(X2; ξ1,±0)

)
, ξ1 < 0.

We repeat the calculations that led to (3.9), using the Green formula in the region ΩR \ Λ0. Then, taking into
account the normalization (2.9), we obtain

M2
1k = q(X2, W 12; ΓR) = lim

R→∞

∑
±

0∫

−R

Xk
2 (ξ1,±0)σ21(W 12; ξ1,±0) dξ1 = 0,

k = 1, 2.

(4.19)

Equality (4.19) is obtained using the relations similar to formulas (4.16) that are proved in [2]:

X1
2 (ξ1,±0) = 0, X2

2 (ξ1,±0) = ±X20
2 r1/2 �= 0, ξ1 < 0.

From the results of [7] and the analysis of the terms W jp of the asymptotic representation (4.6), it follows
that the error in determining the coefficients M11(l, hH) and M12(l, hH) = M21(l, hH) of expansions (4.5) is O(h3)
and the error in determining the coefficient M22(l, hH) is O(h2(1 + | ln h|)).

5. Use of the Griffith Criterion. According to formulas (2.7), (3.10), (4.1), (4.12), (4.14), (4.18), and
(4.19), we have

∆T l = ∆U l + ∆Sl = 2
(
γ(0) − 1

4
m11C1(l)2 − h2

4
m22C2(l)2

)
l

+ h2
(
(γ(0) + γ′′(0))

l∫

0

∣∣∣ dH

dx1
(x1)

∣∣∣2 dx1 + m11H(l)C1(l)C2(l)
)

+ O(h3). (5.1)

For the global formulation of the energy criterion of fracture, it is necessary to minimize expression (5.1).
All parameters, except for the function H describing the crack shape (2.1), are known. The Euler equation for the
functional

(γ(0) + γ′′(0))

l∫

0

∣∣∣ dH

dx1
(x1)

∣∣∣2 dx1 + m11H(l)C1(l)C2(l) (5.2)

on the set of functions H from the Sobolev class W 1
2 (0, l) that satisfy the condition

H(0) = 0, (5.3)

imply the differential equalities

−d2H

dx2
1

(x1) = 0, x1 ∈ (0, l),
dH

dx1
(l) = −1

2
(γ(0) + γ′′(0))−1m11C1(l)C2(l). (5.4)

The solution of the mixed boundary-value problem (5.4), (5.3) is obvious:

H(x1) = −(1/2)(γ(0) + γ′′(0))−1m11C1(l)C2(l)x1. (5.5)

However, the physical interpretation of the result is complicated since the crack shape (2.1), (5.5) is determined
only by the SIF Ci(l) and ignores the loading prehistory. In particular, in the case C1(λ)C2(λ) �= C1(l)C2(l) for
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λ < l, the crack Λλ does not lie on the crack Λl because the branch Λλ \ Λ0 is directed to the abscissa at an angle
different from the angle at which the branch Λl \ Λ0 is directed. At the same time, the crack cannot change path
since the fracture process is irreversible. This contradiction implies that with the global formulation of the energy
criterion of fracture that leads to the problem of the minimum of the quadratic functional (5.2) is not adequate to
the crack curving process under a variable load.

We consider the local Griffith criterion. As the parameter τ , we use the increment l of the length of the
crack projection onto the abscissa. We compare the positions of the crack at the times τ = l and τ + ∆τ = l + ∆l

(l−1∆l is a small positive number). By virtue of formula (5.1), which is written for l and l + ∆l, the total-energy
increment on the interval (τ, τ + ∆τ) is equal to

∆T = 2
(
γ(0) − 1

4
(m11C1(l)2 − h2m22C2(l)2) − l

2
d

dl
(m11 C1(l)2 − h2m22C2(l)2)

)
∆l

+h2
(
(γ(0) + γ′′(0))

∣∣∣ dH

dx1
(l)

∣∣∣2 + m11
dH

dx1
(l)C1(l)C2(l) + m11H(l)

d

dl
(C1(l)C2(l))

)
∆l + O(h3 + ∆l2). (5.6)

Expression (5.6) depends on the material parameters m11, m22, and γ(0), the SIFs Ci(l), the rates of their change,
and the quantities H(l) and (dH/dx1)(l), which characterize the position of the crack tip and the angle of its
deviation from the abscissa [compare with the definition (2.1)]. At the time τ = l, all data of the problem, except
for the derivative (dH/dx1)(l), are fixed and the minimum of the quadratic function

dH

dx1
(l) �→ (γ(0) + γ′′(0))

∣∣∣ dH

dx1
(l)

∣∣∣2 + m11
dH

dx1
(l)C1(l)C2(l)

is reached for
dH

dx1
(l) = −1

2
(γ(0) + γ′′(0))−1m11C1(l)C2(l). (5.7)

The solution of the Cauchy problem (5.7), (5.3) is given by the equality

H(x1) = −1
2

(γ(0) + γ′′(0))−1m11

x1∫

0

C1(l)C2(l) dl. (5.8)

The crack shape (2.1), (5.8) depends on the entire loading history. After elimination of the parameter h

from formulas (2.1), (2.7), and (5.8), the crack path equation becomes

x2 = −1
2

(γ(0) + γ′′(0))−1m11

x1∫

0

C1(l)C2(l) dl (5.9)

under the assumption of smallness of the SIF ratio C2(l)/C1(l). If C2(l) = 0 for l ∈ (0, l0), the crack Λl0 remains
straight.

Substituting formulas (5.9) and (2.7) into relation (5.6), we find the rate of release of the total energy during
growth of a curved crack:

−dT

dl
(l) =

1
2

d

dl

(
l(m11C1(l)2 + m22C2(l)2)

)
− 2γ(0)

+
1
4

m2
11

γ(0) + γ′′(0)

{
C1(l)2C2(l)2 + 2

l∫

0

C1(λ)C2(λ) dλ
d

dl
(C1(l)C2(l))

}
+ O(h3). (5.10)

For hypothetically straight-line crack propagation under the action of a mixed load, the rate of release of
the total energy is calculated without constraints on the second-mode SIF:

−dT

dl
(l) = −dS

dl
(l) − ∂U

∂l
(l) =

1
2

d

dl

(
l(m11C1(l)2 + m22C2(l)2)

)
− 2γ(0). (5.11)

Formula (5.11) coincides with the classical Griffith formula for constant SIFs Ci(l). Expression (5.10) contains
an additional term of the next order of smallness compared to m11C1(l)2. This term is due to crack curving and
depends on the rate of load variation (the derivative with respect to l) and its prehistory (the integral over λ). Both
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dependences are easily predicted. First, the potential strain-energy increment is due not only to the crack growth
but also to the load variation (see, for example, [21]). Second, formulas (5.1) and (5.6) contain the total deviation
hH(l) of the tip of the crack Λl from the abscissa, which is determined by the entire loading process.

If the SIF C2(λ) is not equal identically to zero on the interval (0, l), then the expression in braces in (5.10)
is not necessarily positive. Thus, the rate of energy release (5.11) can exceed the rate (5.10); this, however does not
lead to straight-line propagation of the crack because it is already curved, and formula (5.11) cannot be used.

We consider the factor (γ(0)+γ′′(0))−1 in relations (5.8)–(5.10), which reflects the anisotropy of the strength
properties of the material. If the direction θ = 0 corresponds to the minimum of the surface energy density γ(θ) [it
was assumed that γ′(0) = 0], γ′′(0) > 0 and, hence, in comparison with the case of strength isotropy, the path is
flattened and the critical load increases. If θ = 0 is the maximum point of the density γ, the curvature of the plot
increases and the critical load decreases. In addition, formulas (5.8)–(5.10) become meaningless for γ′′(0) = −γ(0)
[for example, γ(θ) = cos θ+O(|θ|3)]. In other words, a rapid decrease in the surface energy with increasing angle |θ|
causes a sharp deviation of the crack from the abscissa, and the asymptotic analysis performed in Sec. 4, becomes
invalid.

From the assumption, adopted in Sec. 2, that at any time τ the load is critical and the crack is at equilibrium,
it follows implies that dT/dl = 0 for all l ≥ 0. According to formula (5.10), this condition imposes a constraint on
the SIFs. One of the possible situations is constant critical SIFs C1(l) = C1(0) and C2(l) = C2(0), for which the
asymptotic model of the Griffith criterion predicts crack propagation along a half-line at the angle − arctan ((γ(0)
+ γ′′(0))−1m11C1(0)C2(0)/2) to its initial direction. If the second-mode SIF C2(l) = C2(0) �= 0 is constant, the
first-mode SIF C1(l) is found from the Cauchy problem for the nonlinear ordinary differential equation

Y ′′(l)Y (l) + Y ′(l)2/2 + m−1
11 (γ(0) + γ′′(0))C2(0)−2(Y ′(l)2 + 2lY ′′(l)Y ′(l))

= m−2
11 (4γ(0)C2(0)−2 − m22) [l > 0, Y (0) = 0]

for the unknown

Y (l) =

l∫

0

C1(λ) dλ.

The SIF can be found from the last formula.
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expansions of the Lamé operator,” Tr. Mosk. Mat. Obshch., 57, 16–75 (1996).

10. S. A. Nazarov, “Damage tensor and measures. 1. Asymptotic analysis of an anisotropic medium with defects,”
Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 113–124 (2000).

11. I. I. Argatov and S. A. Nazarov, “Energy release due to crack kink in a planar anisotropic solid,” Prikl. Mat.
Mekh., 66, No. 3, 502–514 (2002).

12. N. V. Banichuk “Determining the shape of a curvilinear crack using the small parameter method,” Izv. Akad.
Nauk. SSSR, Mekh. Tverd. Tela, 2, 130–137 (1970).

13. B. Cotterell and J. R. Rice, “Slightly curved or kinked cracks,” Int. J. Fracture, 16, 155–169 (1980).
14. A. B. Movchan, S. A. Nazarov, and O. R. Polyakova, “Path curving during quasistatic crack growth in a plane

with a small defect,” in: Studies of Elasticity and Plasticity (collected scientific paper) [in Russian], No. 18, Izd.
St. Petersburg. Univ., St. Petersburg (1999), pp. 142–161.

15. R. V. Goldshtein and R. L. Salganik, “Plane problem of curvilinear cracks in a solid,” Izv. Akad. Nauk. SSSR,
Mekh. Tverd. Tela, No. 3, 69–82 (1970).

16. M. Amestoy and J. B. Leblond, “Crack path in plane situations. 2. Detailed form of the expansion of the stress
intensity factors,” Int. J. Solids Struct., 29, No. 4, 465–501 (1992).

17. N. V. Movchan and S. A. Nazarov, “Stress–strain state near the vertices of blunt and sharp cones,” in: Applied
Mechanics (collected scientific papers) [in Russian], No. 10, Izd. St. Petersburg Univ., St. Petersburg (1997),
pp. 74–88.

18. V. G. Maz’ya and S. A. Nazarov, “Paradoxes of the limiting transition in solutions of boundary-value problems
involving the approximation of smooth domains by polygonal domains,” Izv. Akad. Nauk SSSR, Ser. Mat., 50,
No. 6, 1156–1177 (1986).

19. S. A. Nazarov and M. V. Olyushin, “Approximation of smooth contours by polygonal contours. Paradoxes in
problems for the Lame system,” Izv. Ross. Akad. Nauk, Ser. Mat., 61, No. 3, 159–186 (1997).

20. S. A. Nazarov, “Invariant integrals in the Leonov–Panasyuk–Dugdale model of a crack,” J. Appl. Mech. Tech.
Phys., 38, No. 5, 784–791 (1997).

21. S. A. Nazarov, “Interaction of cracks in brittle fracture. Force and energy approaches,” Prikl. Mat. Mekh., 64,
No, 3, 484–496 (2000).

723



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


